Silicon nitride platform for visible, near and mid-infrared integrated photonics

Prof. Dr. Ing. Pascual Muñoz
Photonic IC Group – Photonic Research Labs
Universitat Politècnica de València – www.prl.upv.es - Valencia (Spain)

Co-founder, Board of Directors
VLC Photonics S.L. – www.vlcphotonics.com – Valencia (Spain)

Facility Manager
UPVfab, the micro-fabrication R&D and pilot line facility – www.fab.upv.es
Photonic integration ecosystem in Spain
Actors that have outstanding international reputation on PICs

Research and Technology Organisations
Universitat Politècnica de València – PRL – Photonic IC
University of Málaga (UMA)
University Carlos III Madrid (UC3M)
Instituto de Microelectrònica de Barcelona (IMB-CNM-CSIC)
– Brought generic photonic integration to Spain
– Advanced PIC modeling and design
– Terahertz photonic chips
– The reference cleanroom in Spain

Start-ups (some from the RTOs) working on PICs
Medlumics – Optical coherence tomography
VLC Photonics (from PRL) – A photonic integration company
QuSIDE (from ICFO) – Quantum on chip
Alcyon Photonics (from UMA) – Design and IP development
Ommatidia – LIDAR
iPRONICS (from PRL) – Programmable photonic chips

http://www.secpho.org/actoagenda/who-is-who-en-fotonica-integrada/

Next 22nd May 2020 – 12 h CET (in English)
About the Photonic IC group – facilities

Photonic testing labs – 500 m² (~6M€)
Digital 40Gbps
RF analog signals 50 GHz

Class 10.000 – 500 m² (~10M€)
6 inch wafers - automation
Process gases (SiH4, SiCl2H2, NH3, Ar, O2, N2, H2, CHF3, CF4)
Deposition: PECVD, LPCVD, sputtering (RF/DC)
Lithography: contact mask aligner double side alignment.
Etching: wet and dry (ICP-RIE)
Metrology: SEM, FESEM, FIB, FTIR, profiler, ellipsometer
Assembly: µTransfer-Printing, Flip-chip

http://www.prl.upv.es/
https://www.fab.upv.es
Photonic integration: applications, materials & platforms

Rationale for a Silicon nitride Broadband Photonic Integration Platform

Photonics ...
- is used in numerous applications
- applications are linked to wavelength
- Visible (VIS): bio-photonics
- Near-infrared (NIR): tele/datacom
- Mid-infrared (MIR): sensing

Materials used in integration ...
- Transparency in the band of interest
- Absorption/emission in the band

Wanted requirements ...
- To support a wide range of wavelengths
- Base in abundant materials

Silicon and compounds are excellent candidates

R. Kitamura, L. Pilon, and M. Jonasz. “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Applied Optics, vol. 46, no. 33, pp. 8118+, Nov. 2007. http://dx.doi.org/10.1364/ao.46.008118

Si$_3$N$_4$ is transparent from 400 to 6700 nm

Must avoid using SiO$_2$

We, 13th May 2020

P. Muñoz © EPIC OTM Mid-IR Photonics
Institute of Microelectronics Barcelona
Centro Nacional de Microelectrónica - CSIC

Adscription & location

Clean Room Characteristics
1,500 m² (2,900 m² services)
“House in House” structure
Class 100-10,000 (ISO 5-7)
Wafer size 100-150 mm
Stepper + EBL.
CMOS ICs
MEMS/NEMS
Nanofabrication

Operations
From TRL 2 to TRL 9 (concept → market)
25% yearly income is from industry

Industrialized technologies
Radiation detectors
SiC rectifiers for space
Chemical sensors ISFETs

Producto desarrollado:
Sensores químicos ISFETs y MEMFET para sistemas de Lenguaje Electrónica.
Empresa o institución a la que se ha transferido:
AlphaMOS. Francia
Ventaja principal que el desarrollo aporta a la empresa o a sus productos:
Medida de pH, iones y otros analitos con dispositivos muy pequeños y de bajo coste.

Carlos.Dominguez@imb-cnm.csic.es
Jad.sabek@imb-cnm.csic.es

P. Muñoz @ EPIC OTM Mid-IR Photonics
We, 13th May 2020
Si3N4 Photonic Integration Technologies at CNM

Visible (340 nm), Near (300 nm) and Mid-infrared (650 nm) – High quality LPCVD Si3N4 films

Applications: generic

BIO PHOTONICS

TELE/DATACOM

SENSING

\[\lambda \text{ [\text{cm}^{-1}]} \]

\[\text{VIS} \quad 25000 \quad 14000 \quad \text{NIR} \quad 4000 \quad 2500 \quad 1900 \quad 1500 \]

\[0.4 \quad \text{VIS} \quad 0.714 \quad \text{NIR} \quad 2.5 \quad 4 \quad 5.3 \quad 6.7 \]

MIR

SiO2

Si3N4

Si
Silicon Nitride Multi-Project Wafer runs

Three waveguide cross-sections (nitride film 300 nm height, shallow 150/300, deep 300 and mini-deep 150 nm)

Thermo-optic tuners
Selective area trenching
Blocks developed: waveguides, inverted taper, MMI couplers, Mach-Zehnder Interferometers, Sagnac interferometers, Arrayed Waveguide Gratings, ring resonators, …

MWP#0, MPW#1, MPW#2, MPW#3 & MPW#4 finalized

MPW#5 Course and Mask deadline along 2020
Cells size L 5.0x10 mm² & Cells size M 5.0x5.0 mm²

MPW runs at VCL Photonics
mpw@vlcphotronics.com

We. 13th May 2020
P. Muñoz @ EPIC OTM Mid-IR Photonics
SiNx Broadband Photonic Integration Platform
Silicon nitride membrane based – 2nd PoC run finished

Mask CNM-999
Run 13137-MIR

DoE chips λ
1-2 μm
2-3 μm
3-4 μm

Next actions (paused during COVID-19 lock-down)
Process refinements to improve the under-etch @ CNM
OFDR based PIC characterization @ UPV
SiNX Broadband Photonic Integration Platform
Process Design Kit (PDK), building blocks & technology roadmap

<table>
<thead>
<tr>
<th>Wavelength band</th>
<th>PDK 2020</th>
<th>PDK 2021</th>
<th>PDK 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-2 µm</td>
<td>2-3 µm</td>
<td>3-4 µm</td>
</tr>
<tr>
<td>Waveguide</td>
<td>SHWVG</td>
<td>DEWVG</td>
<td>WVGX</td>
</tr>
<tr>
<td>Couplers</td>
<td>Y-B</td>
<td>DC</td>
<td>MMI</td>
</tr>
<tr>
<td>Optical I/O</td>
<td>SPGC</td>
<td>PSGC</td>
<td>SSC</td>
</tr>
<tr>
<td>Tuning</td>
<td>EA-MOD</td>
<td>TO-MOD</td>
<td></td>
</tr>
<tr>
<td>Filter</td>
<td>RR</td>
<td>AWG</td>
<td>DBR / DFB</td>
</tr>
<tr>
<td>Hybrid actives</td>
<td>SOA</td>
<td>Laser</td>
<td>PD</td>
</tr>
</tbody>
</table>

Color code: Green=Available, Grey=Not Available. Abbreviations: SHWVG Shallow waveguide, DEWVG Deeply etched waveguide, WVGX Waveguide crossing, Y-B Y-branch, DC Directional coupler, MMI Multi-Mode Interference coupler, SPGC Single Polarization Grating Coupler, PSGC Polarization Splitting GC, SSC Spot-Size Converter, EA-MOD Electro-Absorption Modulator, TO-MOD Thermo-Optic Modulator, RR Ring Resonator, AWG Arrayed Waveguide Grating, DBR Distributed Bragg Reflector, SOA Semiconductor Optical Amplifier, PD Photo-Detector

Need cooperation with III-V epitaxy / device supplier for hybrid photonic integration

We, 13th May 2020
P. Muñoz @ EPIC OTM Mid-IR Photonics
Conclusion: Silicon nitride platform for visible, near and mid-infrared integrated photonics

What are we offering? What are we looking for?

- Multi-Project Wafer run schedule

<table>
<thead>
<tr>
<th></th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>PoC #1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PoC #2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPW#0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPW#1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPW#2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- What are we offering?
 - Short term: early access to MPW#0 (Nov'20) for proof of concept of mid-infrared photonic chips
 - Mid/long term: a broad-band (VIS-NIR-MIR) active + passive photonic integration platform

- What are we looking for?
 - Technology side: cooperation with III-V epitaxy and device suppliers for hybrid photonic integration
 - Application side: early adopters and seed demonstrators
Thank you! … and acknowledgements

Excellent Science R+D+I Projects
Silicon Nitride Spectrometers
2017-2019
Broadband hybrid SiN platform
2020-2022

Research facilities valorization
PIC characterization services
2017-2019

Infrastructure Acquisition Program
PIC characterization equipment
2018-2019
µ-fabrication cluster automation
2019-2020

Marie Curie Innovative Training Netw.
MICROCOMB – Si3N4 freq. combs
2019-2022

R+D+I Industrial Contracts
PIC BBs for Generic Foundries
2016-2018
Application Specific SiN PICs
2019-2021

Personal acknowledgements:
Prof. Carlos Domínguez (CNM)
& clean room team (CNM)
Photonics Research Labs team (UPV)
R&D department (VLC Photonics)
Prof. Fernando Rey (ITQ)
Prof. Antonio Arnau (CI2B)

EPIC Online Technology Meeting on Mid-IR Photonics
13th of May, 2020 – 15:00-17:30 h CEST